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 In this paper, a comparative performance analysis of bridgeless boost and 
bridgeless buck converter for Uninterruptable Power Supply (UPS) is 
presented. The performance of UPS application in terms of their efficiency is 
compared between the conventional diode bridge converter and both 
bridgeless converters. The input supply power quality is also been analysed 
by applying open and closed loop control techniques to the converter. The 
results show that the efficiency and the input supply quality of the bridgeless 
converters are significantly improved. UPS using bridgeless boost converter 
has better performance in all aspect compared to bridgeless buck converter. 
Aligned with that, the closed loop controller for the converter has also 
improved the efficiency and PF more than the open loop controller in 
performing the UPS system. All the analytical work was performed using 
PSIM software 
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1. INTRODUCTION 

An uninterruptible power supply is a gadget that can supply the interruptible supply to the load and 
generally known as UPS. UPS framework has been introduced broadly in the network centre, communication 
system, financial institution and medical equipment in providing a reliable and continuous power. 
Accordingly, arrange framework stoppages have a major effect to the public and UPS has been expanded the 
significance in giving stable power supply [1-3]. 

As though the power disappointments of power outages occur, computer devices like workstations 
and servers break down may happen and can prompt different issues like program malfunction and loss of 
important data. Besides, even a momentary voltage drop in the factory production lines can experience in 
system stoppages, defective products and the worst-case scenario, it can damage the equipment. 
Consequently, to stay away from these issues, UPS can be introduced in computers, network systems and 
production lines which conceivable to operate systems with stability and efficiency by the various functions 
of UPS [4]. 

With deterioration of worldwide condition and energy crisis, reducing the pollution and enhancing 
the energy conversion efficiency had pulled wide consideration in the entire world. Maintaining a high 
efficiency across the entire line range raises a major challenge for AC to DC rectifiers [5-10]. 

For different applications like UPS, the AC input voltage frequency is 50 hertz produced by the 
electrical supply that converted to a DC supply. Rectifier Bridge is typically used to demonstrate the 
conversion of AC to DC. The loss of bridge rectifier involves in power stage loss by enhancing the power 
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level [11-16]. At any operating condition, bridgeless can be defined when the circuit consist of rectifier 
bridge and there are only two semiconductor devices through the current path [17-21] . 

Uninterruptible Power Supplies (UPS) system is used when the input power source or mains power 
fails. UPS is a non-stop power framework, an electrical device that gives emergency power to a load. A UPS 
different from an emergency power system or standby generator that will give close prompt assurance from 
input power interruptions by supplying energy stored from batteries. The on-battery runtime of most 
uninterruptible power sources is moderately short yet adequate for a standby power source or appropriately 
close down the protected equipment.  

The circuit diagram shown in Figure 1 is a simple form of the commercial UPS that can deliver 48 
VDC. In the power failure condition, the battery will take over. The transformer steps down the main voltage 
to 12 VAC and then the bridge rectifies it. The rectified signal is then smooth by the capacitor. During 
normal operation, the battery will be charged by means of diode D1 and the regulator gets supply from diode 
at D3. At the output of the load terminals 48 VDC is applicable. During power failure, the main supply is cut-
off and the battery will take over to supply current to the 48 VDC output terminal through diode at D2. The 
function of diode at D1 is to make sure there is only one-way flow of current during battery mode. However, 
the diode bridge suffer from high conduction losses thus reduces the overall efficiency of the converter. 

 
 

 
 

Figure 1. Basic UPS system circuit 
 
 
Meanwhile, the increasing of high efficiency requirements has been giving the chances to look for 

any potential opportunities to reduce the converter losses [22-23]. The most common solution is by using 
conventional rectifier which widely used for various kinds of servers, workstations and computers. However, 
it leads to high conduction losses since the input current always flow through the two bridge diodes and a 
power switching device. The conduction losses from diodes presents in front end rectifier has decrease the 
overall converter efficiency, mainly at the input voltage and high output power. Therefore, bridgeless 
topology is introduced to increase the converter performance [24-26]. 

The proposed converter consists of two types of bridgeless topology that will be studied which are 
boost and buck converter for UPS application. These two will be analysed and simulated by using PSIM 
simulator by using two methods of controller. All the analysed data will be recorded by varying the 
parameters and duty cycle in order to get the desired load output. In order to get the output load of 48 VDC, 
the input voltage of boost circuit would be 12 VAC whereas the input voltage for buck circuit would be in the 
range of 90-230 VAC. The conventional rectifier of diode bridge will be compared with the topologies 
proposed in terms of their efficiency. To get the highest possible efficiency in UPS performance, power 
factor (PF) is highlighted by using the PF correction (PFC) in the controller circuit.  

The objectives for this study is to develop a new UPS application using bridgeless converter 
topology and to analyse the performance of the proposed UPS topology. The proposed topologies are 
explained in the next section followed by the simulation and results presented.  
 
 
2. BRIDGELESS CONVERTER 

Figure 2 shows the circuit of bridgeless boost rectifier. The inductor is split and were placed on the 
AC side in performing the structure of boost converter unlike the conventional converter circuit. It can be 
said that the difference between bridgeless and conventional converter circuit is that the inductor current of 
bridgeless will only flow through two semiconductor devices which will lead to reduce the conduction losses. 
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This topology also had replaced the slow diodes of conventional topology by using MOSFET body diode 
regulated by pulse-width-modulation (PWM. Thus, the efficiency of the bridgeless topology is improved due 
to less conduction losses occur. Besides, the bridgeless topology not only reduce the conduction losses, it 
also reduces the total components in the circuit compared to conventional circuit. 

Based on the Figure 1, for positive half cycle, as MOSFET S1 turns on, the inductor L1 stores 
energy and current flows through the path of inductor L1, MOSFET S1, the internal diode of MOSFET S2 
and inductor L2. When the MOSFET S1 is turns off, L1 will then discharges the stored energy by D1 to the 
load. Hence, the current flows through the path of diode D1, load R1, internal diode of MOSFET S2, 
inductor L2 and input line. For the negative half cycle, as MOSFET S2 turns on then, the inductor L2 will 
stores energy and current flows through path of inductor L2, MOSFET S2, internal diode of MOSFET S1 
and inductor L1. When the MOSFET S2 is turns off, L2 discharges stored energy by D2 to load and current 
flows through the path of diode D2, load R1, internal diode of MOSFET S1, inductor L1 and input line. The 
MOSFET S1 can only be driven either on and off in positive half cycle whereas MOSFET S2 driven only in 
negative half cycle. Both MOSFETs driven on/off simultaneously as the freewheeling diodes in S1 and S2 
providing right current flow in every altenation of the input line.  

The bridgeless buck converter shown in Figure 3, utilize two consecutive associated buck 
converters, which operate in alternative halves of the line-voltage cycle. It consists of a unidirectional switch 
carried out by diode that series with switch, freewheeling diode, filter inductor, and output capacitor. During 
the conduction of a switch, the input current will always flow through only one diode. The input bridge 
diodes in which two diodes carry the input current is neglect to improve the efficiency [13].  

During the positive half cycle, the operation consists of unidirectional switch of diode D1 series 
with switch S1. As S1 in turns on, the filter inductor L1 is charging and current flows through diode D1, 
switch S1, inductor L1, capacitor C1, load of R1 and capacitor C2. During the operation, the voltage across 
capacitor C1 is lower than the peak line voltage that regulated by PWM of switch S1 [14]. When switch S2 is 
turns off, inductor L1 discharged by freewheeling diode D3 to the load R1.  

During negative half cycles on line voltage, switch S2 is turns on and the current flows through 
capacitor C2, charge the energy to inductor L2 and to the unidirectional diode of D2 in series with switch S2. 
The voltage across capacitor C2 during the operation is regulated by PWM of switch S2. As the switch S2 is 
turns off, inductor L2 is discharged by freewheeling diode of D4 to the load R1. During switch conduction, 
the current flows from the input line voltage of VAC is always through one diode either D1 or D2. Efficiency 
can be improved by terminating the input bridge diodes as the input current was carried by only two diodes. 

 
 

 
 

Figure 2. Bridgeless boost rectifier 

 
 

Figure 3. Bridgeless buck rectifier 

 
 
3. RESEARCH METHODOLOGY 
3.1.  Open loop (OL) control 

The first method in simulating the circuit is by using the open loop control. The open loop control is 
the simplest way to simulate the circuit in controlling the input voltage. The controller shown in Figure 4 
represents the controller by using comparator in compare both duty cycle from dc voltage source and 
triangular-wave voltage source. The duty cycle is set based on the range of the calculation of duty cycle 
formula. It can be varied because the output voltage in open loop cannot be synchronized according to the 
duty cycle. Besides, the controller also consist of phase detector and a combination of logic gates. The 
comparator can only give positive half cycle output where the signal is positive output and represent the 
“high” signal. During the positive half cycle, the phase detector is in “high” as well. Hence, the signal from 
the comparator and phase detector will give the “high” to the positive inverter where is enable AND2. On the 
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other hand, during the negative half cycle, the output from the phase detector is “zero”. This will enable 
AND1 and disable AND2 which gives the “high” signal to the negative inverter.  

 
 

 
 

Figure 4. Open loop control 
 
 

3.2.  Closed loop (CL) control 
Other than open loop control for UPS application, closed loop control has been represented to 

simulate the system for better power factor and efficiency as shown in Figure 5. It is another method that can 
be compared the performance in using the bridgeless boost and bridgeless buck as the converter in the UPS. 
Closed loop controller has two feedback loops which consist of voltage feedback loop and current feedback 
loop. The voltage feedback loop is to control the output voltage average value whereas the current feedback 
loop is to shape the sinusoidal current waveform at the input. In the closed loop control, the power factor 
preregulator has been used as the PF correction (PFC) to improve the power factor in the system.  

To achieve the near unity PF, the input voltage and input current signals were represented and 
become the current and voltage references to the PF preregulator. By using this closed loop control, the duty 
can be set based on the expected output voltage as the controller will maintain the exact output voltage. The 
voltage sensor gain is set by 1:0.01. Hence, the expected duty cycle can be set by more than 0.48 in order to 
obtain 48 VDC of output voltage. The closed loop controller also used phase detector and combination logic 
gates as the open loop control for the UPS application. The phase detector is used to detect the phase from 
the input supply voltage yet to ensure that the gate signal is in phase and synchronized with the input supply. 
It is from the comparator where the sinusoidal input waveform is from main input voltage and it is connected 
to the noninverting terminal whereas the inverting terminal connected to the ground.   

 
 

 
 

Figure 5. Closed loop control 
 
 

4. PROPOSED CONVERTER 
The proposed circuit is based on the topology from bridgeless boost circuit and has been modified 

and implemented to the basic UPS circuit system regardless the bridge rectifier as shown in Figure 6. The 
supply voltage must be low as it will step up the supply voltage where the line voltage was set in around 12 
VAC. The desired output voltage for this circuit also is depends on the voltage of the battery and the boost 
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voltage must able to supply 1.2 times of the battery voltage to charge the battery. All the parameters were 
designed according to the expected results and can be varied as long as the output power and charging voltage 
can be maintained. The circuit is regulated by PWM and duty ratio for the circuit is followed by:  

𝐷 ൌ 1െ ௏೔೙
௏೚ೠ೟

 (1) 

 
The duty cycle above is based on the Vin of 12 VAC and the output of 48 VDC and to get the optimum 

result, the duty cycle, D=0.68. 
 
 

 
 

Figure 6. Bridgeless boost for UPS application circuit 
 
 
4.2.  Bridgeless Buck for UPS Application 

The proposed bridgeless buck circuit shown in Figure 7 is based on the topology from bridgeless 
buck circuit and has been implemented to the UPS simple circuit regardless the bridge rectifier. The supply 
voltage must be high as the buck is step down the voltage and is around 90 – 230 VAC. The desired output 
voltage is depending on the capacity of the battery and the buck voltage must able to cater the charging voltage 
of 1.2 times the output voltage of 48 VDC. The duty cycle for buck can be calculated by using equation (2): 

 

𝐷 ൌ
௏೚ೠ೟
௏೔೙

 (2) 

 
The above duty cycle can be obtained from the input of 90 VAC and output of 48 VDC. For the 

optimum result, the duty cycle is set at D=0.25. As both topology of boost and buck will be compared in terms 
of their performance, some values are equal for both circuits. The performance analysis of the bridgeless boost 
of UPS system is based on the efficiency and the time respond of the system during switching operation. The 
switch MOSFET between AC and DC part of the circuit resemble the switching operation and time when the 
circuit is take over by the DC to supply the load. 

 
 

 
 

Figure 7. Bridgeless buck for UPS application circuit 
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5. RESULT ANS DISCUSSION 
The proposed boost and buck converters are simulated using PSIM with different parameters for 

every converter. However, the values of output power, Pout and output voltage, Vout have been set to make 
comparison for their performance. Figure 8 to Figure 12 show the waveform of the output voltage, Vout and 
output current, Iout from every topology. It can be said that the Vout is at 48 VDC by maintaining the Pout to be 
in range. 
 
 

  
 

Figure 8. Vout and Iout of diode bridge rectifier 
 

Figure 9. Vout and Iout of BL boost OL control 
 
 

  
 

Figure 10. Vout and Iout of BL buck OL control 
 

Figure 11. Vout and Iout of BL boost CL control 
 
 

 
 

Figure 12. Vout and Iout of BL buck CL control 
 
 

From Table 1, the output value is analyzed from the waveform obtained. The Vout is the expected 
output voltage to be more than 48V. It can be increase more in the future as long as in line with the expected 
result. The average Vout represent the normal condition with charging mode of the UPS. However, since it is 
the application for UPS system, the best Vout must able to reach 1.2 times voltage of the battery. In this 
system proposed, during normal condition, the supply voltage can supply directly to load while charging the 
battery of 48V. The output power, Pout is to be maintained between 100W and 110W to make a further 
performance comparison for all converters. Hence, the Pout is expected to be in range. When the expected 
output has been determined, the performance for every topology is analyzed and studied. Figure 13 to Figure 
17 show the waveforms of input voltage, Vin and input current, Iin in different topology. From the 
waveforms, the performance can be analysed by observing their current waveforms. All the topologies are 
operated based on the theoretical analysis and works accordingly with the simulation results. The aim is to 
see the waveform of the Iin to be in phase with the Vin waveform. However, the diode bridge in Figure 13 is 
giving the most distorted waveform followed by buck converter as in Figure 15. BL buck converter is giving 
some nearest Iin sinusoidal waveform especially when using closed loop converter as in Figure 17, but the 
distorted line is still appear due to harmonics. The waveforms can be compared with the usage of boost 
converter where the Iin waveform is almost in line with Vin waveform. BL boost converter in Figure 14 can 
be considered to be able to regulate the Iin and make it fundamentally in phase with Vin. The waveforms of 
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Iin can be seen both in proposed controller for BL boost and the best is in BL boost of closed loop controller 
as in Figure 16. 

Table 1. Analysis of output in different topology 
Topology Vout (V) Iout (A) Pout (W) 

Diode Bridge 86.70 1.08 105.50 
BL Boost 62.43 1.78 110.02 
BL Buck 50.38 2.19 110.24 
BL Boost PFC 56.84 1.89 107.78 
BL Buck PFC 48.02 2.18 104.82 

 
 

  
 

Figure 13. Vin and Iin of diode bridge rectifier 
 

Figure 14. Vin and Iin of BL boost OL control 
 
 

  
 

Figure 15. Vin and Iin of BL buck OL control 
 

Figure 16. Vin and Iin of BL boost CL control 
 
 

 
 

Figure 17. Vin and Iin of BL buck CL control 
 
 

Table 2 shows the analysis on the input side based on the simulated waveforms. It can clearly see that 
BL Boost will have high Iin if compared to other topology. The input in the diode bridge topology has a very 
high value of power supply.  

 
 

Table 2. Analysis of input in different topology 
Topology Vin (V) Iin (A) Pin (W) 

Diode Bridge 89.80 3.36 205.92 

BL Boost 12.00 13.56 112.28 
BL Buck 89.89 4.36 129.33 
BL Boost PFC 12.00 9.28 110.91 

BL Buck PFC 89.89 1.88 114.82 

 
 

In comparing all the topologies proposed, the finalize performance of their efficiency and PF are 
analysed as in Table 3. By using the diode bridge rectifier, the efficiency is inefficient since the efficiency is 
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51%. The PF result from the simulation is in the best range but cannot be fairly compared with other 
topologies. Because of the performance of the diode bridge rectifier in UPS is giving unsatisfactory 
performance theoretically and in simulation, the BL converters of boost and buck have been proposed and 
compared. From the analysis, the BL boost is giving the best result than BL buck. It can be seen in all terms 
where the highest efficiency between those two converters is BL boost. Although BL boost of open loop 
controller gives the highest efficiency of 97%, the PF is still not in a good range of accepted PF which is 0.69. 
BL buck with open loop controller is giving a very low PF of 0.33 and it is considered as a very bad system if 
apply to the UPS system. Hence, another topology is presented by using the same topology of BL boost and 
BL buck but in difference controller which is closed loop controller.  

 
 

Table 3. Comparison of efficiency and PF in different topology 
Topology Efficiency (%) at Pout=100W-110W PF 

Diode Bridge 51 0.97 

BL Boost 97 0.69 
BL Buck 85 0.33 
BL Boost PFC 97 0.98 
BL Buck PFC 91 0.68 

 
 

The closed loop controller is another level of method to improve the PF and act as a PFC. The ability 
of this method is proven by simulation results. Based on the Table 3, the efficiency of the BL boost open loop 
control and BL boost closed loop control not giving any difference but, the PF is improved by 0.29. In 
comparing the BL buck open loop and BL buck closed loop, it has increase by 6% of efficiency and increase 
the PF by 0.35 as well.  

Thus, closed loop controller gives better performance than open loop controller in UPS system. 
Between those two of converters of BL boost and BL buck, it is precise the ability of BL boost to give better 
performance for UPS application. 
 
 
6. CONCLUSION 

In a conclusion, the best converter for UPS application is by using bridgeless boost converter with a 
combination of closed loop controller. All the simulation and analysed data were sided to the BL boost with 
closed loop controller since the waveform is the most fundamentally in phase with its input voltage and the 
simulated PF is the highest among other converter arrangement. The efficiency is also high i.e. 97% efficient 
and it is surely is suitable for UPS application. With all the proven data and analysis, it is no doubt to state that 
bridgeless boost converter with closed loop controller gives the best performance for UPS application and 
reduce the conduction losses in the system by improving the efficiency and PF.  
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